About Us
  Contact Us
  Mail (Faculty : Student)
Updated on: July 15, 2010  

Thermogravimetric evaluation of the suitability of precursors for MOCVD
G V Kunte, S A Shivashankar and A M Umarji,
Meas. Sci. Technol, 2008

A method based on the Langmuir equation for the estimation of vapour pressure and enthalpy of sublimation of subliming compounds is described. The variable temperature thermogravimetric/differential thermogravimetric (TG/DTG) curve of benzoic acid is used to arrive at the instrument parameters. Employing these parameters, the vapour pressure-temperature curves are derived for salicylic acid and camphor from their TG/DTG curves. The values match well with vapour pressure data in the literature, obtained by effusion methods. By employing the Clausius-Clapeyron equation, the enthalpy of sublimation could be calculated. Extending the method further, two precursors for metal-organic chemical vapour deposition (MOCVD) of titanium oxide bis-isopropyl bis tert-butyl 2-oxobutanoato titanium, Ti(OiPr)2(tbob)2, and bis-oxo-bis-tertbutyl 2-oxobutanoato titanium, [TiO(tbob)2]2, have been evaluated. The complex Ti(OiPr)2(tbob)2 is found to be a more suitable precursor. This approach can be helpful in quickly screening for the suitability of a compound as a CVD precursor.


Mechanical properties of tricalcium phosphate single crystals grown by molten salt synthesis
Viswanath, B., Raghavan, R., Gurao, N.P., Ramamurty, U., Ravishankar, N.
Accepted in Acta Biomaterialia (In Press).

Mechanical properties of flux-grown tricalcium phosphate (TCP) single crystals ranging in size from 50 to 75 ?m have been characterized by performing micro- and nanoindentation on their facets. Notwithstanding the inherent brittleness and anisotropy, these single crystals exhibit nanoscale plasticity in the form of pile-up around the edges of indents. A similar plastic response was observed in hydroxyapatite (HA) single crystals during nanoindentation in an earlier study. The hardness and elastic modulus obtained during nanoindentation are discussed in comparison with the polycrystalline forms of both TCP and HA found in the literature. The indentation fracture toughness values of TCP single crystals were found to be higher than those of HA single crystals. The higher values are attributed not only to the difference in crystal structure and corresponding differences in surface energy, but also to extensive crack bridging by ligament formation across crack faces during crack propagation.


Predicting the Growth of Two-Dimensional Nanostructures
Viswanath, B., Paromita Kundu, Mukherjee, B., Ravishankar, N.
Nanotechnology 2008

The ability to predict the morphology of crystals formed by chemical reactions is of fundamental importance for the shape-controlled synthesis of nanostructures. Based on the atomistic mechanism for crystal growth under different driving forces, we have developed morphology diagrams to predict regimes for the growth of two-dimensional crystals. By using controlled reactions for crystal growth in the absence of surfactants/capping agents, we demonstrate the validity of this approach for the formation of 2D structures of Au, Ag, Pt and Pd.


A one-step technique to prepare aligned arrays of carbon nanotubes
Pitamber Mahanandia and Karuna Kar Nanda
Nanotechnology 2008

Abstract: A simple effective pyrolysis technique has been developed to synthesize aligned arrays of multi-walled carbon nanotubes (MWCNTs) without using any carrier gas in a single-stage furnace at 700 °C. This technique eliminates nearly the entire complex and expensive machinery associated with other extensively used methods for preparation of CNTs such as chemical vapour deposition (CVD) and pyrolysis. Carbon source materials such as xylene, cyclohexane, camphor, hexane, toluene, pyridine and benzene have been pyrolyzed separately with the catalyst source material ferrocene to obtain aligned arrays of MWCNTs. The synthesized CNTs have been characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. In this technique, the need for the tedious and time-consuming preparation of metal catalysts and continuously fed carbon source material containing carrier gas can be avoided. This method is a single-step process where not many parameters are required to be monitored in order to prepare aligned MWCNTs. For the production of CNTs, the technique has great advantages such as low cost and easy operation


2008 Materials Research Centre. All rights reserved.